viernes, 17 de abril de 2009

El pato Donald en el país de las matemáticas

video video video video video video

Algunos de los grandes genios matemáticos

Pascal, Blaise (Clemont-Ferrand, 1623-1662), filósofo, matemático y físico francés, considerado una de las mentes privilegiadas de Occidente. No tardó en resaltar como un prodigio en matemáticas, y a la edad de 16 años formuló uno de los teoremas básicos de la geometría proyectiva, conocido como el teorema de Pascal y descrito en su Ensayo sobre las cónicas (1639). En 1642 inventó la primera máquina de calcular mecánica. Pascal demostró mediante un experimento en 1648 que el nivel de la columna de mercurio de un barómetro lo determina el aumento o disminución de la presión atmosférica circundante. Este descubrimiento verificó la hipótesis del físico italiano Torricelli respecto al efecto de la presión atmosférica sobre el equilibrio de los líquidos. Seis años más tarde, junto con Fermat, formuló la teoría matemática de la probabilidad, que ha llegado a ser de gran importancia en estadísticas actuariales, matemáticas, sociales, y clave en la física teórica moderna. Otras de las contribuciones científicas importantes de Pascal son la deducción de la ley que establece que los líquidos transmiten presiones con la misma intensidad en todas las direcciones (principio de Pascal), y sus investigaciones sobre las cantidades infinitesimales. Pascal abrazó el jansenismo y llevó una vida rigurosamente ascética hasta su muerte. Durante este tiempo escribió diversos tratados religiosos de gran complejidad: salvación, pecado original, la revelación, etc con una gran lógica y fuerza dialéctica, siendo además de uno de los más eminentes matemáticos y físicos de su época y uno de los más grandes escritores místicos de la literatura cristiana.



Copérnico, Nicolás (1473-1543). Astrónomo polaco, conocido por su teoría que sostenía que el Sol se encontraba en el centro del Universo y la Tierra, que giraba una vez al día sobre su eje, completaba cada año una vuelta alrededor de él: Teoría heliocéntrica. Estudio humanidades, después derecho y medicina. En Bolonia entró en contacto con el matemático Domenico Maria de Novara, que criticó la exactitud de la Geografía de Tolomeo (S.II). Este profesor fomentó el interés de Copérnico por la geografía y la astronomía. En 1500, se doctoró en astronomía en Roma. Al año siguiente estudió medicina en Padua y sin haber acabado estos estudios, se licenció en derecho canónico 1503 y regresó a Polonia. Entre 1507 y 1515 escribió un tratado breve de astronomía, Commentariolus (De hypothesibus motuum coelestium a se constitutis commentariolus), publicado en el S.XIX y que sentó las bases de la concepción heliocéntrica de la astronomía: la Tierra giraba sobre sí misma una vez al día, y que una vez al año daba una vuelta completa alrededor del Sol. Aportó un nuevo orden en alineación de los planetas según sus periodos de rotación. A diferencia de Tolomeo, vio que cuanto mayor era el radio de la órbita de un planeta, más tiempo tardaba en dar una vuelta completa alrededor del Sol. La idea de que la Tierra se movía era difícil de aceptar en el S.XVI y aunque parte de su teoría fue admitida, la base principal fue rechazada. Fue objeto de numerosas críticas, en especial de la Iglesia, por negar que la Tierra fuera el centro del Universo. La mayoría de sus seguidores servían a la corte de reyes, príncipes y emperadores. Los más importantes fueron Galileo y Johannes Kepler. Con posterioridad a la supresión de la teoría de Copérnico, tras el juicio eclesiástico a Galileo en 1633, que lo condenó por corroborar su teoría, algunos filósofos jesuitas la siguieron en secreto. En el siglo XVII, con el auge de las teorías de Isaac Newton sobre la fuerza de la gravedad, la mayoría de los pensadores en Gran Bretaña, Francia, Países Bajos y Dinamarca su teoría.






Bernoulli, Daniel (1700-1782), nació en Groningen (Países Bajos), el 29 de enero de 1700 y desde muy pronto manifestó su interés por las matemáticas. El científico suizo nacido descubrió los principios básicos del comportamiento de los fluidos. Su padre y su tio, ya habían hecho aportaciones importantes al primitivo desarrollo del cálculo. Promovió en Europa la aceptación de la nueva física del científico inglés Isaac Newton. Estudió el flujo de los fluidos y formuló el teorema según el cual la presión ejercida por un fluido es inversamente proporcional a su velocidad de flujo. Utilizó conceptos atomísticos para intentar desarrollar la primera teoría cinética de los gases, explicando su comportamiento bajo condiciones de presión y temperatura cambiantes en términos de probabilidad. Sin embargo, este trabajo no tuvo gran repercusión en su época.






Aristóteles (384-322 a.C.), filósofo y científico griego, es uno de los filósofos más destacados de la antigüedad. Escribió entre otros ensayos, un resumen de las doctrinas de Pitágoras; del que han sobrevivido pocos extractos. Estos textos se basan en gran parte en las anotaciones recopiladas y ordenadas por sus editores posteriores. Entre ellos están los tratados de lógica llamados Organon ('instrumento'), ya que proporcionan los medios con los que se ha de alcanzar el conocimiento positivo. En lógica, desarrolló reglas para establecer un razonamiento encadenado que, si se respetaban y si la reflexión partía de premisas verdaderas (reglas de validez ), no producirían falsas conclusiones ). En el razonamiento, los nexos básicos eran los silogismos: proposiciones emparejadas que, en su conjunto, proporcionaban una nueva conclusión. En el ejemplo más famoso, "Todos los humanos son mortales" y "Todos los griegos son humanos", se llega a la conclusión válida de que "Todos los griegos son mortales". La ciencia es el resultado de construir sistemas de razonamiento cada vez más complejos. Distinguía entre la dialéctica y la analítica. La dialéctica sólo comprueba las opiniones por su consistencia lógica. La analítica, trabaja de forma deductiva a partir de principios que descansan sobre la experiencia y una observación precisa. Ello supone una ruptura con el pensamiento de Platón, donde la dialéctica era el único método lógico válido, tan eficaz para aplicarse en la ciencia como en la filosofía.



































jueves, 16 de abril de 2009

Historia del cálculo

INTRODUCCIÓN

La palabra cálculo proviene del latín calculus, que significa contar con piedras. Precisamente desde que el hombre ve la necesidad de contar, comienza la historia del calculo, o de las matemáticas.
Las matemáticas son una de las ciencias más antiguas, y más útiles. El
concepto de matemáticas, se comenzó a formar, desde que el hombre vio la necesidad de contar objetos, esta necesidad lo llevó a la creación de sistemas de numeración que inicialmente se componían con la utilización de los dedos, piernas, o piedras. De nuevo, por la necesidad, se hizo forzosa la implementación de sistemas más avanzados y que pudieran resolver la mayoría de los problemas que se presentaban con continuidad.

CIVILIZACIONES ANTIGUAS

En este momento de la historia, la Civilización Egipcia, llevaba la pauta con el avance en sus conocimientos matemáticos. Según varios papiros escritos en esa época, los egipcios inventaron el primer sistema de numeración, basado en la implementación de jeroglíficos. El sistema de numeración egipcio, se basaba en sustituir los números clave (1, 10, 100...), con figuras (palos, lazos, figuras humanas...), los demás números eran escritos por la superposición de estas mismas figuras, pero en clave. Este sistema es la pauta para lo que hoy conocemos como el sistema romano.
Otras civilizaciones importantes en la historia, como la babilónica, crearon otros sistemas de numeración. En la Antigua Babilonia, la solución al problema de contar los objetos, se vio resuelto con la implementación de un
método sexagesimal. Este método tenia la particularidad de escribir un mismo signo como la representación de varios números diferenciados por el enunciado del problema.
Civilizaciones como la
China Antigua, y la India Antigua, utilizaron un sistema decimal jeroglífico, con la cualidad de que estas implementaron el número cero.
Los avances obtenidos desde que cada
cultura implemento su sistema numérico, aún son utilizados actualmente. El avance algebraico de los egipcios, dio como resultado la resolución a ecuaciones de tipo . La correcta implementación de la regla aritmética de cálculo, por parte de los Indios, aumento el conocimiento matemático, y la creación de los números irracionales, a demás que ayudó a la resolución de sistemas de ecuaciones de la forma .
En la Antigua
Mesopotamia, se introduce el concepto de número inverso, a demás de las soluciones a distintos problemas logarítmicos, e incluso lograron la solución a sistemas de ecuaciones de la forma , y . Su avance fue tal que crearon algoritmos para el calculo de sumas de progresiones. Y en geometría, se cree que conocían el teorema de Pitágoras, aunque no como un teorema general.
China sin duda tubo que ver en gran medida en el avance matemático. Su aporte principal se basaba en la creación del "método del elemento celeste", desarrollado por Chou Shi Hié, con el cual era posible la resolución de raíces enteras y racionales, e incluso aproximaciones decimales para ecuaciones de la forma Pn(x)=a4x4+a3x3+a2x2+a1x+ao.

MATEMÁTICAS EN GRECIA

Sin embargo las matemáticas obtuvieron su mayor aporte de la cultura Greco Romana. Fue en Grecia, don de se hizo popular la creación de escuelas, en donde los grandes pensadores de la época daban resolución a los problemas más populares de geometría, álgebra, y trigonometría.
Los aportes de esta cultura a las matemáticas son de enorme magnitud. Por ejemplo en el campo de la geometría, se dio la demostración del teorema de Pitágoras, a demás que fue hallado el método para conseguir la serie indefinida de ternas de números pitagóricos, que satisfacen la ecuación . Incluso se trabajó enormemente en la resolución y demostración de distintos problemas, como en la trisección de un ángulo, y en la cuadratura de áreas acotadas por una curva. Esto conllevó a al avance en él calculo del número pi y a la creación del método de exaución (predecesor del cálculo de limites), creado por Euxodo.
El avance que obtuvieron los griegos en cuanto al álgebra y la geometría, los llevó a la constricción de una nueva rama de las matemáticas, llamada, álgebra geométrica. Esta nueva rama incluía entre otros conceptos el método de anexión de áreas, el conjunto de proposiciones geométricas que interpretaban las cantidades algebraicas, y la expresión de la arista de un poliedro regular a través del diámetro de la circunferencia circunscrita.
En Grecia, no se hicieron esperar los problemas que implicaban la
construcción de límites, por lo que en su época, Demócrito y otros grandes pensadores intentan darles respuesta con la unificación de las matemáticas y la teoría filosófica atomicista. Considerando de esta forma la primera concepción del método del límite.
El
interés que produjeron las matemáticas en Grecia, hace que se considere como la cuna de esta ciencia. Por lo cual se bautizó a la época comprendida de los años 300 a.c y 200 a.c, como la edad de oro de las matemáticas.
Después de esta época, Grecia deja de ser el centro evolutivo de las matemáticas,
conflictos sociales y políticos que se vivían en esa época alejan a Grecia de esta ciencia. Por esta situación otro imperio toma las riendas de los avances matemáticos.

MATEMÁTICAS EN LA CULTURA ÁRABE

Los Árabes, que en esos momentos vivían un momento de expansión, no sólo territorial sino intelectual, en poco tiempo logran descifrar más conocimientos de esta materia. La historia de las matemáticas en Los pueblos árabes comienza a partir del siglo VIII.
El imperio musulmán fue el primero en comenzar este desarrollo, intentando traducir todos los textos Griegos al árabe. Por lo que se crean gran cantidad de escuelas de gran importancia, en donde se traducen
libros como el Brahmagupta, en donde se explicaba de forma detallada el sistema de numeración hindú, sistema que luego fue conocido como "el de Al-Khowarizmi", que por deformaciones lingüísticas terminó como "algoritmo".
Los avances obtenidos en esta época, enmarcan al concepto del límite, la
introducción de los números racionales e irracionales, especialmente los reales positivos, y el desarrollo en la trigonometría, en donde se construyeron tablas trigonométricas de alta exactitud.

RENACIMIENTO Y MATEMÁTICAS MODERNAS

La siguiente época importante en la historia de las matemáticas esta comprendida en la época del renacimiento. En este momento de la historia es cuando aparece el cercano oriente como conocedor de las matemáticas. Aunque la historia de las matemáticas en el cercano oriente, no es tan antigua como en el lejano oriente, su aporte es de gran magnitud, especialmente con la aparición de gran cantidad de obras escritas por los grandes matemáticos de la época.
Es de destacar la obra de Leonardo de Pissa, titulada Liber Abaci, en donde se explicaba de una forma clara el uso del
ábaco y el sistema de numeración posicional. Igualmente entre otras obras importantes, se puede mencionar Él practica Geometrie, en donde se resolvían problemas geométricos, especialmente los de calculo de áreas de polígonos.
Uno de los grandes aportes de esta cultura se obtuvo en la introducción de los exponentes fraccionarios y el concepto de números radicales, a demás se estableció un sistema único de números algebraicos, con lo que se izo posible expresar ecuaciones en forma general.
Después de esta larga
evolución, las matemáticas entraron en el siglo XIX, en donde se postularon los fundamentos de las matemáticas modernas.
Avances en la resolución de ecuaciones y en lo que hoy se conoce como calculo, hicieron de esta época la de mayor riqueza para esta ciencia.
Entre los grandes desarrollos de esta época se puede mencionar, la resolución de ecuaciones algebraicas radicales, el desarrollo del concepto de
grupo, avances en los fundamentos de la geometría hiperbólica no euclidiana, a demás de la realización una muy profunda reconstrucción sobre la base de la creada teoría de límites y la teoría del número real.
Se separaron crearon varias ramas de las matemáticas en ecuaciones diferenciales, la teoría de funciones de variable real y la teoría de funciones de variable compleja.
En el ámbito de la teoria de los
conjuntos, se compuso una serie de teorías altamente desarrolladas: los grupos finitos, los grupos discretos infinitos, los grupos continuos, entre ellos los grupos de Lie. Durante los años 1879 a 1884 se elaboraron de forma sistemática la teoría de conjuntos, introduciendo el concepto de potencia de un conjunto, el concepto de punto límite, de conjunto derivado. La teoría general de las potencias de conjuntos, las transformaciones y operaciones sobre conjuntos y las propiedades de los conjuntos ordenados constituyeron fundamentalmente la teoría abstracta de conjuntos
En relación con el
análisis matemático en este siglo, se fundamento en un conjunto de procedimientos y métodos de solución de numerosos problemas que crecía rápidamente. Todos estos métodos aun podían dividirse en tres grandes grupos, constituidos en el cálculo diferencial, el cálculo integral y la teoría de ecuaciones diferenciales. Con estos fundamentos se llegó a lo que se conoce como teoría de límites y de funciones, que fueron el tema central en este siglo.
Bernard Bolzano, fue el pionero en el análisis de funciones, en sus trabajos estudio del criterio de convergencia de
sucesiones y dio una definición rigurosa de continuidad de funciones. Estudió profundamente las propiedades de las funciones continuas y demostró en relación con éstas una serie de notables teoremas, destacando el denominado teorema de Bolzano: una función continua toma todos los valores comprendidos entre su máximo y su mínimo.
También amplió la clase de curvas continuas, aplicando el método de acumulación de singularidades y obtuvo, entre otras funciones originales, la función que no tiene derivada en ningún punto y conocida actualmente como función de Bolzano
Otro de los grandes avances obtenidos en esta época, fue la introducción de la variable compleja, con ella se pudieron resolver los cálculos de
integrales, lo que ejerció una grandísima influencia sobre el desarrollo de la teoría de funciones de variable compleja. Matemáticos como Laplace acudieron a la interpretación en variable compleja, con lo que fue desarrollando el método de resolución de ecuaciones lineales diferenciales.
Ya e el siglo VII, es cuando se hacen populares la construcción de academias reconocidas en ámbito de las matemáticas, como la Academia de Londres y París. En este siglo es cuando comienzan todas las disciplinas matemáticas actuales, como la
geometría analítica, los métodos diferenciales e infinitesimales, y el cálculo de probabilidades.
Alrededor del año 1636 Apolonio comienza sus estudios en geometría analítica, descubriendo el principio fundamental de la geometría analítica: "siempre que en una ecuación final aparezcan dos incógnitas, tenemos un lugar geométrico, al describir el extremo de uno de ellos una línea, recta o curva".
Con esto después formulo e identificó las expresiones xy=k2; a2+x2=ky; x2+y2+2ax+2by=c2; a2-x2=ky2 como la hipérbola, parábola, circunferencia y elipse respectivamente. Para el caso de ecuaciones cuadráticas más generales, en las que aparecen varios términos de segundo grado, aplicaron rotaciones de los ejes con objeto de reducirlas a los términos anteriores.
A nivel de los métodos integrales, la mayor fama la adquirió la geometría de los indivisibles, creada por Cavalieri, pensado como un método universal de la geometría. Este método fue creado para la determinación de las medidas de las figuras planas y cuerpos, los cuales se representaban como elementos compuestos de elementos de dimensión menor. Así, las figuras constan de segmentos de rectas paralelas y los cuerpos de planos paralelos. Sin embargo, este método era incapaz de medir longitudes de curvas, ya que los correspondientes indivisibles (los puntos) eran adimensionales. Pese a ello, la
integración definida en forma de cuadraturas geométricas, adquirió fama en la primera mitad del siglo XVII, debido a la gran cantidad de problemas que podían resolver.
En el transcurso de este siglo los problemas diferenciales, aun se resolvían por los métodos más diversos, Hacia mediados del siglo XVII se acumuló una reserva lo suficientemente grande de
recursos de resolución de estos problemas, actualmente resolubles mediante le diferenciación.
La aparición del análisis infinitesimal fue la culminación de un largo
proceso, cuya esencia matemática interna consistió en la acumulación y asimilación teórica de los elementos del cálculo diferencial e integral y la teoría de las series. Para el desarrollo de este proceso se contaba con: el álgebra; las técnicas de cálculo; introducción a las matemáticas variables; el método de coordenadas; ideas infinitesimales clásicas, especialmente de Arquímedes; problemas de cuadraturas; búsqueda de tangentes... Las causas que motivaron este proceso fueron, en primer término, las exigencias de la mecánica, la astronomía y la física. En la resolución de problemas de este género, en la búsqueda de problemas generales de resolución y en la creación del análisis infinitesimal tomaron parte muchos científicos: Kepler, Galileo, Cavalieri, Torricelli, Pascal, Walis, Roberval, Fermat, Descartes, Barrow, Newton, Leibniz, y Euler.
El concepto de Calculo y sus ramificaciones se introdujo en el siglo XVIII, con el gran desarrollo que obtuvo el análisis matemático, creando ramas como el
calculo diferencial, integral y de variaciones.
El cálculo diferencial fue desarrollado por los trabajos de Fermat, Barrow, Wallis y Newton entre otros. Así en 1711 Newton introdujo la fórmula de interpolación de diferencias finitas de una función f(x); fórmula extendida por
Taylor al caso de infinitos términos bajo ciertas restricciones, utilizando de forma paralela el cálculo diferencial y el cálculo en diferencias finitas. El aparato fundamental del cálculo diferencial era el desarrollo de funciones en series de potencias, especialmente a partir del teorema de Taylor, desarrollándose casi todas las funciones conocidas por los matemáticos de la época. Pero pronto surgió el problema de la convergencia de la serie, que se resolvió en parte con la introducción de términos residuales, así como con la transformación de series en otras que fuesen convergentes. Junto a las series de potencias se incluyeron nuevos tipos de desarrollos de funciones, como son los desarrollos en series asintóticas introducidos por Stirling y Euler. La acumulación de resultados del cálculo diferencial transcurrió rápidamente, acumulando casi todos los resultados que caracterizan su estructura actual
Introducir el calculo integral, se logro con el estudio de J.Bernoulli, quien escribió el primer curso sistemático de cálculo integral en 1742. Sin embargo, fue Euler quien llevó la integración hasta sus últimas consecuencias, de tal forma que los métodos de integración indefinida alcanzaron prácticamente su nivel actual. El cálculo de integrales de tipos especiales ya a comienzos de siglo, conllevó el descubrimiento de una serie de resultados de la teoría de las funciones especiales. Como las funciones gamma y beta, el logaritmo integral o las funciones elípticas.
Este es el desarrollo las matemáticas han obtenido desde que el hombre vió la necesidad de contar, hasta nuestros días. Actualmente gran cantidad de matemáticos siguen en el desarrollo de las matemáticas denominadas matemáticas modernas, de donde sus conceptos son la base de la mayor parte de las ciencias actuales.

CONCLUSIONES

La historia del cálculo, comienza desde que comenzó la historia del hombre, cuando este vio la necesidad de contar
Han sido muchos los grandes matemáticos que han influido en el desarrollo que actualmente posee el calculo, igualmente que han sido muchas las culturas que han influido en sus avances
Las matemáticas, actualmente son la base de todas las ciencias que maneja el hombre, debido a que su campo de acción cubre la totalidad de los conocimientos científicos.

miércoles, 15 de abril de 2009

Historia de las matemáticas

Históricamente, la matemática surge con el fin de hacer los cálculos en el comercio, para medir la Tierra y para predecir los acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y el cambio.
El estudio de la estructura comienza con los
números, inicialmente los números naturales y los números enteros. Las reglas que dirigen las operaciones aritméticas se estudian en el álgebra elemental, y las propiedades más profundas de los números enteros se estudian en la teoría de números. La investigación de métodos de resolver ecuaciones lleva al campo del álgebra abstracta. El importante concepto de vector, generalizado a espacio vectorial, es estudiado en el álgebra lineal, y pertenece a las dos ramas de la estructura y el espacio.
El estudio del espacio origina la
geometría, primero la geometría euclidiana y luego la trigonometría.
La comprensión y descripción del cambio en variables mensurables es el tema central de las
Ciencias Naturales, y el cálculo. Para resolver problemas que dirigen en forma natural a relaciones entre una cantidad y su tasa del cambio, y de las soluciones a estas ecuaciones se estudian en las ecuaciones diferenciales.
Los números que usaron para representar las cantidades continuas son los
números reales, y el estudio detallado de sus propiedades se denomina análisis. Por razones matemáticas, es conveniente introducir los números del complejo que se estudian en el análisis complejo.
El concepto central que se usa para describir una variable cambiante es que de una
función, y su estudio, se denomina análisis funcional. Un campo importante en matemática aplicada es la probabilidad y la estadística, que permiten la descripción, el análisis y la predicción de fenómenos que tienen variables aleatorias y que se usan en todas las ciencias. El análisis numérico investiga los métodos para realizar los cálculos en computadoras.